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1 Abstract

The development of musculoskeletal models allows us to diagnose and treat pathological movement
patterns as well as evaluate and increase athletic performance. High quality models are typically the
result of over-constrained optimization problems informed by many measurements. Electromyog-
raphy (EMG) measures muscle activation, internal measurement units (IMUs) measure movement,
force plates measure ground reaction forces (GRFs), and motion-capture systems measure kinematics.
GREFs are foundational in many biomechanical analyses but their direct measurement typically limits
the scope of a study because force plates restrict the field through which a subject can move. In
contrast, EMG measurements can be gathered remotely with untethered sensors attached directly to
the subject. Consequently, indirect measurement of GRFs, predicted via a model, would allow for a
wider variety of experiments. Here we demonstrate that machine learning architectures are capable
of modeling the relationship between EMG data and GRFs and can compute GRF estimations in
real time. We evaluate the performance of four neural networks trained on paired EMG and GRF
data captured as three subjects walked at a steady pace. The models can independently predict forces
for each limb and identify gait cycle features like heel-contact and push-off. While this study only
examines subjects with typical gait patterns performing a single activity, the success of the models
motivates more analysis of how we can indirectly measure GRFs. More broadly, results like this
validate tactics to design studies with a wider variety of motions, not limited to the area covered by a
force plate.

2 Introduction

2.1 Problem

Ground reaction forces are a powerful diagnostic tool for medical professionals. Notably, ground
reaction forces are commonly used to asses lower limb support in stroke patients [4]]. In addition to
their impact in clinics, GRFs support the practice of inverse dynamics for biomechanists performing
simulations for research studies. After motion capture data collection, GRFs allow for a more
resolute result from inverse dynamics. Despite the impact GRFs have in many settings, common
practices of obtaining GRFs involve instrumented force plates that pose significant constraints on
many researchers and medical teams as a result of their size and weight. The inability to measure
GRFs for long durations and in everyday contexts limits the potential insight that may be obtained
from GRFs. Therefore, solving the need for a portable alternative to measuring GRFs would support
the development of studies and practices that monitor human movement during an individuals every
routine.

2.2 Previous Works

Several previous works have focused on predicting ground reaction forces (GRFs) using different
approaches and data sources. One common approach has been to utilize accelerometer data from
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an inertial measurement unit (IMU) to estimate GRFs. In one study, a single accelerometer was
placed on the sacrum of subjects to obtain an IMU data stream. This data was then transformed into
GRFs by applying a rotation matrix to align the data with the ground coordinate axis. The resulting
acceleration profile in the vertical axis was multiplied to derive the force in the vertical direction [2].

In addition to IMU data, previous attempts to generate GRFs have explored the use of algorith-
mically complex neural network architectures, such as echo state networks. These networks have
been employed to predict joint kinematics and GRFs based on input data streams from surface
electromyography (EMG) [1]]. By leveraging the cyclical nature of biomechanical data, including
EMG and gait kinematics signals, these models have shown promise in predicting GRFs. However,
there is a growing need to develop models with greater computational simplicity to enable real-time
prediction of GRFs for applications in clinical and research settings.

Surface EMG (sEMG) has emerged as a commonly used form-factor for collecting EMG data.
Compared to implanted EMGs, surface EMGs offer increased safety and comfort [3]. However, data
obtained from surface-level EMGs presents certain challenges that require additional post-processing.
Signal artifacts arising from soft tissue movement and placement errors necessitate rectifying, filtering,
and normalizing the data stream [6]. Moreover, it is common practice to conduct maximal effort
trials to establish an activation baseline and develop more accurate models. Despite these challenges,
surface EMGs have been successfully employed in studies involving spinal cord injury and step-down
activation in patients with osteoarthritis [S} [1].

2.3 Model Architectures
2.3.1 Simple Linear and Fully Connected Models

Two regression models, namely direct linear regression and a fully connected multi-layer perceptron
(MLP), were employed to explore the relationship between surface electromyography (EMG) signals
and ground reaction force. The intuitive expectation of a linear association between these variables
stems from the observation that during the stance phase of the gait cycle when the leg is in contact
with the ground, muscle activations in the leg are higher compared to the swing phase. The shallow
fully connected neural network was chosen to strike a balance between simplicity and the ability
to capture subtle nonlinearities in the ground reaction force profile across different gait patterns.
Moreover, the adoption of a shallow architecture maintains a high degree of interpretability, setting it
apart from other complex models commonly used in the field.

2.3.2 WaveNet

WaveNet is a MLP architecture that uses dilated convolutions to predict the next element in a
time-series data stream[9]. It was developed by Google for generating audio outputs based on the
previous context of an input audio signal. For example, generating musical audio with a WaveNet
architecture empowers a neural network to generate an audio output based on the previous 1024
audio amplitudes. The WaveNet architecture is depicted in Figure 2*** Audio and EMG data
streams are both time-series data that contain significant high-frequency content. The ability to
use a receptive field, conditioning each GRF prediction on several timesteps of EMG information
seemed powerful and, unlike the audio-to-audio model trained in the original paper, we were able
to implement a lookahead by incorporating a short (100ms) delay. While we were inspired by the
original architecture, we made modifications to adapt it to our use case. We used 2d convolutions and
a receptive field of 16 with a lookahead of 7.
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Figure 1: WaveNet Dilated Convolution Architecture [8]]



2.3.3 Echo State Network

In preparing the literature review in response to the hopeless confusion of trying to understand the
WaveNet model, Cooper came across the Echo State Network used in [[1]]. This paper is the closest to
our final goal - so Cooper took a shot at implementing this approach. In the same paper, it is found
that Recurrent and Convolutional Neural Nets (RNNs, CNNs) very slightly outperformed the ESN
(.94 and .93 vs. .92) in finding GRFs, but under-performed on finding joint angles. In addition, ESN,
CNN, and RNN all vastly outperform simpler, traditional machine learning approaches (mentioned in
3.0) at both joint angles and GRFs by not over-fitting, as shown in Figure 2]

ESNs were used in the literature to calculate joint angles and GRFs in patients with osteoarthritis
stepping down [1]]. [7] was used as a guide to understand ESN framework, reservoir size, spectral
radius, and the remaining hyper-parameter selection. ESNs require a reservoir computing framework
and additional functions to work. Pytorch-esn was used to implement the ESN which interfaced with
the Trainer module in our code.
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Figure 2: RNN, CNN, and ESN outperforming traditional ML approaches on time series data in [[1]]

3 Methods

3.1 Data Collection

We trained preliminary models on a validated dataset of EMG and GRF measurements which
included video, marker data, and inverse dynamics as well [10]. While this gave us reason to believe
that we could model GRFs as a function of EMG, the dataset had limitations that prohibited us from
making generalizable and robust models. The set contained data on ten subjects doing seven activities
for about five to ten seconds each and only half of that window contained activity. The diversity
in subjects movement and our inability to generalize between motions meant that we did not have
enough data to train robust models for each motion.

We elected to capture data on ourselves using resources in the Human Performance Lab at Stanford
University. Three male subjects in their 20s walked for 20 minutes each at speeds of 1 to 1.2 m/s.
We placed 14 EMG sensors on the lower limbs. We placed sensors over the right and left soleus,
gastrocnemius, tibialis anterior, biceps femoris long head, vastus medialis, vastus lateralis, and the
right semitendinosus and rectus femoris. EMG signal was measured with Delsys Corp wearable
sensors and GRFs were measured with a force-instrumented treadmill. The setup can visualized in
figure[3. Each subject has a typical gait pattern although one subject reported soreness and fatigue
prior to the capture session. EMG was filtered with a 12Hz Butterworth filter and normalized to the
maximum activation exhibited in a particular subject during walking. EMG was captured at SOHz
and GRFs were captured at 2kHz.

3.2 Model Training

We trained each model architecture on this data set. For each architecture, we produced four
models that varied in the values they were trying to predict and which data was held out. Two were
trained to predict GRFs on the right foot and two were trained to predict the left. In each of those



Figure 3: Collecting EMG Data in Human Performance Lab

groups, one was trained on 60% of each subject’s data with 40% held out for validation and test. The
other was trained on two subjects’ data in entirety with the third subject being held out for validation
and test. At training time we ran our model with a batch size of 32 and calculated loss with Mean
Squared Error (MSE). We updated our model with PyTorch’s Adam optimizer.

During training, we noticed that models would frequently fall into a local min of predicting 0 and
we can see that each of the right and left curves is, indeed, O for about 40% of the gait cycle. To
account for this, we ignored batches where every element was 0 with 99% probability.

4 Results and Discussion

In an effort to validate code, prior to training on the entire dataset, we looked at a subset of data.
From a quick visual evaluation, models were incredibly accurate in their estimation of GRFs. Figure
[ shows a very strong fit. Admittedly this is a plot of model performance on the data it was trained
on. Unfortunately, these results were not replicated when trained on the entire dataset and evaluated
on a validation set. Because ESNs were not implementable under the same framework used for the
other three architectures, their results are presented separately.
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Figure 4: Models learn well when trained on small amounts of data

4.1 Learning Curves

Most models, excepting the fully connected MLP reduced cost over the course of their training.
While this was encouraging, the performance was not reflected in observably satisfying accuracy.
The model that didn’t learn fell into the local minimum of predicting zero every time and it’s easy to
believe that it could be retrained to exhibit similar learning to other models.
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Figure 5: Learning Curve from Even Split and Generalizer Holdout

4.2 Time performance

Model GRF predictions resembled the general shape of GRFs; however, a significant differentiating
factor between model architectures was the time to produce a series of GRF predictions. In practice,
a GRF predictive model would be applied in real time; therefore, a faster model is preferred. A linear
architecture presented the fastest run time compared to the neural network architectures as depicted
in Table 1.

Table 1: Time performance
[ Model Architecture  Time (s) for forward run (10k samples) ||

Linear 4.795
Deep Linear 7.328
CNN 11.187

4.3 Simple Linear and Fully Connected Performance

The simple linear model in Figure 6 is the fastest model but presents significant noise compared to
the simple fully connected neural network in Figure 7. The shallow neural network captures the small
nonlinearities in the relationship between EMG and GRF data streams. In practice, software could
implement filtering when the GRF prediction is below a threshold to eliminate the additional noise at
low GREF predictions.
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Figure 6: Performance of Single Layer Linear Model

4.4 WaveNet Performance

The convoluted architecture of the WaveNet model is depicted in Figure 8. The plots demonstrate the
ability for the WaveNet architecture to generate reasonable GRF predictions; however, the model did
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Figure 7: Performance of Deep Linear Model

not predict the GRFs as well as the shallow neural network in Figure 7. The complex convoluted
neural network attempted to learn the GRF pattern with stacked convolutional layers with small
kernels. This approach does not emphasize a direct relationship between EMG and GRF compared to
the linear layers in the previously mentioned approaches.
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Figure 8: Performance of CNN

4.5 ESN Performance

For peak fitting, The best result of the PyESN-based implementation was an RMSE of 32, using
either 2000 or 5 reservoir neurons and a spectral radius of 1.5 (shown in Figure 9a). For fitting flat
regions, the best result was from, a reservoir of 100 and a spectral radius of 90. However, fitting peaks
and fitting zeroes have an inverse correlation by inspection. Even the best models calculated by RMSE
oscillated jaggedly around the flat regions - minimizing error but not actually fitting very well aside
from peaks. Despite the conventional wisdom that larger reservoirs lead to better performance, the
lowest RMSE values were consistently at lower reservoirs (5-50 total nodes). These small models
train in under 30 seconds - whereas 4000 node reservoirs took hours (and had worse performance, as
shown in table 2 below). One possible explanation for this is that simple time-series data only needs
a small reservoir, as it also serves as a short-term memory for the data - which is simple.
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Figure 9: GRF Predictions for the ESN Model, corresponding to samples 1-4 in the table below.

Given that Cooper was unable to correctly implement an ESN that matched the PyTorch implemen-
tation, it isn’t possible to evaluate the performance relative to the other models. Regardless, the ESN
was a viable option - provided that hyper-parameters were tuned sufficiently. Despite not being easy
to fit into our PyTorch framework, we expect that this model is still a viable option for this task as a
result of the work done by [1]], shown in Figure 2. However, the complexity is only merited when
training to predict multiple outputs (Joint angles, GRFs, etc).

5 Future Work

This report demonstrates an accurate model in predicting real-time GRFs for walking. Current
force place GRF measuring devices provide reliable GRFs for any task. Therefore, future work should
explore developing models for GRF prediction from EMG data across a variety of movement-related
tasks. These tasks may include the following: running, jumping, asymmetric walking, squatting,
and gait patterns associated with diagnosed musculoskeletal diseases. Subsequently, approaches
should be investigated to combine such models to yield a single platform that may provide real-time
GRFs without the necessary force plate setup. One such combination tactic may be to first pre-
dict the movement pattern and then apply the appropriate model to a single EMG window accordingly.

In addition, refining the ESN and fully integrating it with the PyTorch framework would allow for
quicker iteration, as well as more nimble training splits between different subjects. This would enable
the ESN to be evaluated for its ability to generalize across subjects, as well as encompass both left
and right foot data at the same time. The main bottleneck to this is creating a Training class that was
able to pass parameters such as washout (which operated similarly to WaveNet looking back at n
samples) all the up through the model.



Table 2: ESN RMSE Performance with Hyperparameter Exploration
H Reservoir Neurons ~ Spectral Radius Random Seed RMSE H

250 1.5 42 57.8583
500 1.5 42 59.5360
1000 1.5 42 49.5854
2000 1.5 42 32.2617
4000 1.5 42 41.2431
500 3 42 54.7051
500 1 42 47.5439
500 0.5 42 46.4272
40 1.5 42 55.5682
20 1.5 42 51.7118
5 1.5 42 32.7038
100 90 42 26.6790

6 Contributions

The report was written with equal contributions from the team.

Ben contributed to the initial exploration with the WaveNet and attempts to generate a simple
fully connected MLP for the GRF prediction. Ben facilitated EMG and GRF data collection in the
Stanford HPL with teammates as well as post processing the data for appropriate model development.

Quincy contributed to reading in the processed EMG and GRF data. Quincy developed the most
successful linear regression, fully-connected, MLP, and convolutional architectures to predict GRF
forces from EMG inputs. Quincy established the framework for plotting the GRF outputs with the
ground truth labels as well.

Cooper contributed to the development of the echo state network GRF prediction as well as a
literature review and exploration/analysis of previous methods.
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