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Abstract

Generative artificial intelligence models present a grow-
ing technology with potential to transform standard prac-
tices in many disciplines. 3D Computer Aided Design
(CAD) is the industry standard for many companies for
rapid prototyping, professional design, and simulation un-
der load. A core component of CAD workflows is a cus-
tomizeable timeline with history of each step, such as
sketches or extrudes, so edits upstream in the timeline will
propagate through to appropriately modify the current de-
sign. However, CAD design is a laborious and time in-
tensive process that often warrants sketching a preliminary
2D model. Here we show Sketch-to-CAD, a generative
Al model to expedite CAD development by transforming a
2D sketch into a 3D CAD workflow with the appropriate
timeline. Four encoder decoder model architectures were
trained. CAD dataset for 2D input sketches and output cad
vector instructions was leveraged from the ABC-dataset.
Various combinations of CNN and transformer encoders
with transformer and LSTM decoders dictate the model ar-
chitectures, and the highest performing model featured a
CNN encoder with a pretrained transformer decoder. No-
tably, the model featured command and parameter test ac-
curacies of 93.50 and 68.30 % and resulted in saliency im-
ages that clearly focus on the input sketch lines. Accord-
ingly, the Sketch2CAD model presents a disruptive tech-
nological advancement to support CAD design workflows.
Expedited CAD design subsequently empowers engineering
teams and corporations to iterate and design new products
more often.

1. Introduction

Computer-Aided Design (CAD) is a prominent technol-
ogy utilized across various engineering disciplines to fa-
cilitate 3D design, development, and simulation analysis.
A singular CAD file comprises an amalgamation of opera-
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tions, such as 2D sketches, extrudes, fillets, and chamfers.
This CAD file effectively establishes a chronological frame-
work, enabling editors to make upstream adjustments that
seamlessly propagate throughout the design. While 3D de-
sign plays a pivotal role in prototyping and product devel-
opment, the expeditious nature of 2D sketching empowers
engineers to swiftly brainstorm and explore numerous de-
sign concepts. Consequently, it is customary to transform
a 2D sketch into a CAD design. However, the process of
converting an isometric 2D sketch into a comprehensive 3D
model is arduous and time-consuming. By developing a
pipeline for 3D design that provides an adjustable model
timeline, one can facilitate the refinement of a 3D model,
thereby enhancing the accessibility of 3D design and pre-
senting an opportunity to revolutionize global workflows.
In this context, we introduce a novel model that exhibits the
ability to extract essential features from isometric sketches
and generate the sequential steps necessary for constructing
a CAD model. We will be exploring various architectures
of CNN, Transformers and LSTM to encode and decode the
isometric sketch into steps of a CAD model.

2. Related Work

Prior works have explored the use of sketching in the
context of Computer Aided Design (CAD). One of the sem-
inal works in this area is ”Sketch2CAD: Sequential CAD
Modeling by Sketching in Context” [1], which develops an
autoencoder latent space for generating CAD timelines for a
3D design. Subsequently, a generative adversarial network
(GAN) is developed using the latent-GAN technique to ran-
domly produce vectors is the latent space that result in real-
istic 3D CAD timelines. Additionally, a dataset of 178,238
CAD models and timelines was generated with designs that
exclusively use simple sketch and extrude commands.

Another related work is ”A 2D Sketch-Based User In-
terface for 3D CAD” [2], which presents a user interface
that allows users to search for and retrieve 3D CAD mod-
els based on sketches. This system typically use similarity



metrics to match input sketches with existing models in a
database.

Despite modern efforts to develop models for CAD spe-
cific applications, previous generative models for 3D design
focus on non-customizeable formats [3]. OpenAl’s Point-
E produces point-cloud 3D outputs from complex prompts
[4]. While point clouds, meshes, and .stl files enable finer
and printable representations of 3D volumes, software for
adjusting such designs does not exist.

3. Dataset and Features

We utilize a subset of the DeepCAD Dataset, which con-
sists of 166,225 CAD models [5]. This dataset is derived
from the ABC dataset [6], a collection of one million CAD
models. Each CAD model in the DeepCAD Dataset is rep-
resented as a sequence of steps for sequentially building the
sketches and extrusions of the model.

3.1. Input: Isometric Sketches

The input of our model is an isometric sketch of the CAD
file. To obtain it, we load the STEP file associated with
each CAD model in Fusion 360 [7] and export an isometric
sketch of the part (Fig 1). Each image is inverted to rep-
resent sketched lines as positive signal. The image is nor-
malized between 0 and 1. The initial image has size 1024
x 1024, it is resized to 256 x 256 and cropped to a size of
240 x 240, to reduce the size of the input.
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Figure 1. Example of a CAD drawing to be used as a proxy for
hand drawn sketches during model development

3.2. Output: Steps of CAD model

A CAD model, denoted as M, is defined by a series
of curve commands and extrusion commands Fig. 2). In
other words, M can be represented as a command sequence

M = [C4,...,Ch,], where each C; takes the form (¢;, p;).
Here, t; represents the command type, and p; represents the
corresponding parameters. The commands and parameters
are detailed in Figure 3.

CAD construction process:

Shetch 1 Extrude 1 Shketch 2 Extrude 2

Parametrized command sequence:
(soL); : @ i Es : (0,0,0,-2,-1,0,3,

Ly : (2,0) 1,0, New body, One-sided)

Ag:(2,2,m1) | (SOL)g:0

Ly : (0,2) i Ry : (0,0,1.125)

Ls : (0,0) Ey : (0,0,0,-2,0,0,2.25,
(SOL)g : 0 : 2,0, Join, One-sided)

R7:(2,1,0.5) (EOShy2: 0

Figure 2. A CAD model example specified by the commands in
Fig. 3. (Top) the CAD model’s construction sequence, annotated
with the command types. (Bottom) the command sequence de-
scription of the model. [5]

After normalization steps, the final network-friendly
representation of the CAD step is a 17 x 1 vector:
[ti7 r,y,a, f7 T 97 qbv’}/vpz?pyapzv S,€1,€2, b7 U] Here, t; is
an integer between 0 and 5, and the other elements are in-
tegers between —1 and 255. A value of —1 indicates that
the specific element is not used in that step. Representing
the continuous variables of a CAD instruction (ie: X, y, or z,
location) allows expressing each values with 8-bit numbers.

Commands Parameters
(soL) )
E r, 1 : line end-point
(Line) B e
@, y : arc end-point
( Aﬁ;c) a @ sweep angle
[ : counter-clockwise flag
R X,y @ center
(Circle) 7 : radius
f, &, ~ : sketch plane orientation
Pas Py- P- ¢ sketch plane origin
a : : scale of associated sketch profile
(Exlmch & 1 8CE 58 Cd & P!
€1, €2 : extrude distances toward both sides
b : boolean type, u : extrude type
(EOS) 1]

Figure 3. CAD commands and their parameters. { SOL ) indicates
the start of a loop; ( EOS ) indicates the end of the whole sequence.

(5]



Additionally, when creating CAD designs, it is important
to maintain certain geometric relationships such as parallel
and perpendicular sketch lines. However, directly gener-
ating continuous parameters through parameter regression
can lead to errors that violate these relationships. To over-
come this, parameter quantization is used to categorize pa-
rameters into specific levels, allowing the network to better
uphold learned geometric relationships.

For this project, we will limit the number of steps to
N. = 60 and pad all step sequences to 60 using the empty
step: ( EOS ).

Thus, we have one classification task for the CAD com-
mands with the number of classes equals 6 and and 16 other
classification tasks for the CAD arguments with the number
of classes equal 256. We can see in Figures 4 and 5, the data
distribution across the classes.
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Figure 4. Frequency of the classes of each command in the dataset.
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Figure 5. Frequency of the classes of each parameter in the dataset.

We observe a large data imbalance in the dataset. There
are more Lines than any other CAD step (Fig. 4). We also
observe that for almost each parameter, there is a dominant
class that can be observed with the peaks in Fig. 5.

4. Methods
4.1. Evaluation

To evaluate our models, we calculate the Cross Entropy
Loss between the ground truth sequence of CAD steps and
the predicted sequence.

N, N. Np
L= Zf(fi,ti) + ﬁz Zg(f)upi)
i=1 i=1 j=1

where ¢(.,.) is the standard Cross-Entropy, NN, is the
number of parameters (16) and 3 is a hyperparameter that
compares the importance of both terms in the optimization
process. For the commands and parameters that are not used
in a step (labeled as —1), their contribution to the loss is ig-
nored. Additionally, we developed saliency plots for a small
subset (5 images) of the test set to identify which regions of
the input images held the greater influence on the CAD se-
quence predictions.

Model evaluation includes a qualitative component of in-
specting the resulting CAD file. Timelines and realistic ex-
trusions are visualized to understand the extent to which the
CAD sequences are realistic.

The quantitative evaluation will include the accuracy of
the CAD commands and the accuracy of the CAD param-
eters by comparing them to the ground truth. We will also
compare the number of CAD models that are perfectly pre-
dicted based on the ground truth.

4.2. Model Architectures

We explored several deep learning architectures for the
Sketch-to-CAD task. The architectures we experimented
with include Convolutional Neural Networks (CNNs),
Transformers, and Long Short-Term Memory (LSTM) net-
works. We try different architectures of sketch images en-
coders and CAD steps decoders. The idea is to encode the
input image into a latent vector z of dimension 256 and then
input this vector into a decoder that will output the CAD
steps.

4.2.1 Convolutional Neural Networks (CNNs) Encoder

CNNs are widely used for image-related tasks due to their
ability to capture spatial dependencies in the data. We de-
signed a CNN-based architecture that takes the input iso-
metric sketch image and learns to extract relevant features
for predicting the CAD steps. The CNN architecture con-
sists of multiple convolutional layers followed by a fully
connected layer.



Figure 6. CNN Encoder Model Architecture

4.2.2 VGG Encoder

We implement a standard CNN architecture, VGG-19 de-
picted in Figure 7, as a starting point to encode the 2D
isometric view sketch inputs. Once we obtain a fully-
connected layer, we tune additional layers using the output
ground truth data. The first model design featured a un-
frozen VGG model with two supplemental fully-connected
layers with batch normalization and dropout (p=0.5). The
objective of the encoder layer is to create a latent vector that
may be decoded using the DeepCAD transformer decoder
from a pretrained autoencoder.
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Figure 7. VGG-19 Encoder Model Architecture [§]

4.2.3 Transformers Encoder

Transformers have gained significant attention in natural
language processing tasks due to their ability to capture
long-range dependencies. We adapted the transformer ar-
chitecture for our Sketch-to-CAD task by treating the input
isometric sketch as a sequence of pixel patches. Each patch
in the sketch image is treated as a token, and the transformer
model learns to encode the spatial relationships between the
pixel patches. The transformer architecture consists of mul-
tiple encoder layers, followed by a fully connected layer and
a tanh activation (Fig. 8).
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Figure 8. Transformer Encoder Model Architecture

4.2.4 Long Short-Term Memory (LSTM) Decoder

LSTM networks are a type of recurrent neural network
(RNN) that are capable of learning long-term dependen-
cies in sequential data. We designed an LSTM-based ar-
chitecture for our Sketch-to-CAD task, which takes in the
latent vector z. The LSTM network learns to process the
sequential information and predict the corresponding CAD
steps. We use a one-to-many LSTM architecture, we have
60 LSTM cells, each one predicting one step of the CAD
sequence by taking in the hidden state of the previous cell
and the latent vector z (Fig. 9).
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Figure 9. LSTM Decoder Model Architecture

4.2.5 Transformers Decoder

Built on Transformer blocks, the transformer decoder from
the previously trained Deep CAD autoencoder depicted in
Figure 10 is implemented [5].
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Figure 10. Deep CAD Autoencoder Architecture [5]

We will be using the decoder of this model and freeze
its parameters during training. The decoder takes as input
learned constant embedding while also attending to the la-
tent vector z. Output from the last Transformer block is
fed into a linear layer to predict a CAD command sequence
M = [C’l, ce C ~.], including both the command type t;
and parameters p; for each command. As opposed to the
auto regressive strategy commonly used in natural language
processing, Deep CAD adopts the feed-forward strategy.
and the prediction of their model can be factorized as

Nec

i=1
where 6 denotes network parameters of the decoder.
4.3. Model Implementation and Training

We decide to explore four combinations of these en-
coders and decoders:

VGG Encoder and Transformer Decoder

¢ CNN Encoder and LSTM Decoder

¢ Transformer Encoder and Transformer Decoder

CNN Encoder and Transformer Decoder

During training, we used the Adam optimizer. We em-
ployed early stopping based on the validation loss to prevent
overfitting. The models were trained for a maximum of 50
epochs, with batch size set to 256. The learning rate of each
model can be found in the following table:

Table 1. Learning Rates for the different models

Model Learning Rate
VGG — Transformer 0.01
CNN — Transformer 0.001
Transformer — Transformer 0.00001
CNN — LSTM 0.005

5. Experiments, Results and Discussion

Each of the four model architectures was trained using a
shuffled subset comprising 90% of the total data. The mod-
els were subsequently validated and tested using 5% of the
data. For training, validation, and testing the predictive ac-
curacy was obtained for the command and parameters. In
each CAD step, a single command indicates whether the
subsequent parameters are for a sketch, arc, circle, extrude,
start token, or end token. The accuracies for both the com-
mands and parameters in Table 2 indicate the model with a
CNN encoder and transformer decoder resulted in the great-
est accuracies for both commands and parameters.

5.1. Saliency Plots

Saliency plots of 3D CAD drawings provide a concise
and informative visualization of the pixel components that
have the greatest influence on the softmax logits. These
plots offer a robust and clear representation of the relative
importance of different pixels in determining the final out-
put. By analyzing the saliency plots in 11, one can eas-
ily identify the specific areas within the 2D sketches that
contribute to the decision-making process of the predictive
models. The Transformer — Transformer model and CNN
— Transformer model contain reasonable signal amplitude;
however, the CNN — LSTM and VGG — Transformer
models demonstrate limited signal amplitude in the saliency
plot.

Transformer CNN CNN VGG
Transformer LST™ Transformer

Figure 11. Comparative Saliency Visualizations

Transformer

The saliency visualizations in Figure 11 highlight the
ability of the model with a CNN encoder and Transformer
decoder to recognize the attributes of the input image that
correspond to a sketch. The VGG encoder model required
cropped images to match the encoder architecture and fea-
tured the worst quantitative performance. Additionally
saliency plots in Figure 12 confirm the model performance
of the CNN - Transformer as it pertains to recognizing the
important regions of the input image. Moreover, we also



Table 2. Command and Parameter Model Accuracies

Model Train C | TrainP | ValC | ValP | Test C | Test P
VGG — Transformer 76.44 50.39 | 75.59 | 50.41 | 75.81 | 50.58
CNN — Transformer 97.04 80.72 | 9230 | 71.33 | 93.50 | 68.30
Transformer — Transformer | 91.61 71.40 | 91.09 | 69.59 | 90.53 | 64.26
CNN — LSTM 78.28 59.95 | 78.74 | 59.86 | 78.13 | 55.88

observe the patterns of the patches that are used in the trans-
former encoder and how they influence the output.

Figure 12.
Model

Saliency Visualizations for CNN — Transformer

This explains the accuracies observed in Table 2. In fact,
for the CNN-LSTM and VGG-Transformer model we ob-
serve that the model wasn’t able to capture key features of
the image which leads to low accuarcies compared to the
other two models Transformer - Transformer and CNN -
Transformer which were able to get a better extraction of
features as seen in the saliency plots and thus, lead to better
results.

5.2. CAD Predictions

After training each of the four model architectures, sam-
ple outputs were obtained at test time to visualize examples
of CAD outputs. Successful CAD outputs depicted in Fig-
ure 13 were results of the three architectures with the Deep-
CAD transformer decoder.

Table 3. Number of fully accurate CAD part for the different mod-
els in the test dataset

Model Fully accurate CAD parts
VGG — Transformer 0

CNN — Transformer 109
Transformer — Transformer 19

CNN — LSTM 0

(a) CNN - Transformer

(b) CNN - Transformer

W

(d) VGG - Transformer

(c¢) Transformer - Transformer

Figure 13. Successful CAD Predictions

Despite improvements in the accuracy of the models, no-
tably the CNN encoder — Transformer decoder model, pre-
dicting CAD steps demonstrated marginal improvements
due to the high degree of accuracy required to ensure the
sketch lines form closed entities to be extruded. In the cases
where the sketch lines do not form closed shapes, the pre-
dicted CAD as depicted in Figure 14 was an infeasible de-
sign. In addition to the unrealistic CAD predictive outputs
from the three models with the DeepCAD transformer de-
coder, the LSTM decoder model resulted in identical fail-
ing predictions regardless of the input sketch. This might
be due to the data imbalance observed in Fig. 5. In fact,
we have parameters occurring very often, almost more than
70% of the time, which may have lead the model to con-
verge towards these parameter values with high frequency
peaks.

Thus, visually inspecting the generated CAD steps and
looking at the number of succesful CAD parts generated
(Table 3), we observe that the CNN - LSTM and VGG -
Transformer models weren’t able to generate good CAD
parts. On the other side, we see that the Transformer -



Transformer and CNN - Transformer models were able to
generate CAD parts made of a few elementary shapes like
cylinders, cubes and triangles. Thus, these models have the
potential of being able to be improved to potentially create
more complex CAD models.

vl

(a) CNN - Transformer (b) VGG - Transformer

Figure 14. Unsuccessful CAD Predictions
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Figure 15. Parameters Accuracies for the CNN encoder - Trans-
former Decoder Model

We decide to take a closer look at the accuracies of each
of the 16 parameters predicted for the best model we got, the
CNN encoder - Transformer Decoder model. We observe
that many parameters have very high accuracies, while oth-
ers barely reach 40%. We see that parameters related to
coordinates like the point coordinates (z, y) and the plane
origin coordinates (p,, Py, P~), and the parameter related to
scaling s are the ones which are associated with the low-
est accuracies (Fig. 15). This means that the failure we
observe in our CAD parts is due to this inability of extract-
ing coordinates of key points or the scaling of the different
components by simply looking at a 2D sketch.

5.3. Limitations

While the CNN-Transformer model showed promising
results, there are several limitations to consider:

CAD step representation: The CAD steps were repre-
sented as a sequence of discrete symbols in this study. This
representation may introduce challenges in capturing fine-
grained details and continuous variations in the CAD steps.
Moreover, we observed a highly imbalanced data where we

have parameters occurring almost more than 70% of the
time, which lead to the LSTM model to fail by converging
to one parameter value no matter the input.

Failure in detecting complex sequences of steps: The
models failed in detecting complex sequences of steps and
just was able to generate elementary shapes like cubes and
cylinders. This was caused by the inability of the model
to predict accurately coordinates of key points in the CAD
steps like edges of lines or points of origin which will lead
to complete failure of the CAD generation.

5.4. Future Directions

To address the limitations and further improve the
Sketch-to-CAD models, several future directions can be ex-
plored:

Larger and more diverse dataset: Collecting a larger
and more diverse dataset of isometric sketches and corre-
sponding CAD steps would enhance the models’ ability to
generalize to a wider range of design scenarios and improve
their performance.

Fine-grained CAD representations: Investigating al-
ternative representations for CAD steps, such as continuous
or vector-based representations, could capture finer details
and provide more flexibility in generating accurate CAD
outputs.

Deep Reinforcement Learning: It would be interest-
ing to train a Deep RL model capable of based on a cur-
rent state: CAD steps is able to take an action: CAD step
and get a reward based on the new state. Some poten-
tial reward functions could be one that penalizes failing
CAD sequences and one that encourages CAD sequences
that generate sketches similar to the input image. In fact,
this approach makes more sense in this context, given that
there exist infinitely many representations that work for one
sketch and thus, having a labeled CAD sequence for an im-
age limits the capacity of the model to generalizes.

6. Conclusion

In conclusion, our study introduces Sketch-to-CAD, a
generative Al model designed to expedite the process of
CAD development by transforming 2D sketches into 3D
CAD workflows with customizable timelines. To our
knowledge, this is the very first paper that presents a method
to predict an editable timeline of CAD steps based on
sketches. We explored various deep learning architectures,
including CNNs, Transformers, and LSTMs, to encode the
isometric sketches and decode them into CAD steps.

The performance of the different algorithms varied, with
some architectures demonstrating higher accuracy and more
realistic CAD sequences than others. The CNN Encoder
- Transformer Decoder architecture showed promising re-
sults in capturing relevant features from the input sketches,



while generating realistic basic CAD parts. The other mod-
els weren’t able to achieve good results since they con-
verged to an optimal optima where the output is the same
no matter the input which is due to data imbalance in the
parameters distributions.

As next steps, we plan on incorporating techniques to
address the data imbalances, such as oversampling or class
weighting, which could enhance the performance and ro-
bustness of the models. Additionally, exploring ensemble
methods, which combine the predictions of multiple mod-
els, might lead to improved accuracy and generalization ca-
pacity.

Furthermore, expanding the dataset by including a
greater variety of CAD models and steps would provide
a more comprehensive training set and enable the models
to learn a wider range of design features and workflows.
This could involve incorporating more complex CAD com-
mands.
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